
Towards Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal and Jordan B. Pollack
DEMO Lab, Computer Science Department

Brandeis University, MS018
Waltham, Massachusetts 02454–9110

{ari, pollack}@cs.brandeis.edu

Abstract

The task of monitoring success and failure in coevolu-
tion is inherently difficult, as domains need not have
any external metric to measure performance. Past met-
rics and visualizations for coevolution have been lim-
ited to identification and measurement ofsuccess but
not failure.We suggest circumventing this limitation by
switching from “best-of-generation”-based techniques
to “all-of-generation”-based techniques. Using “all-of-
generation” data, we demonstrate one such techique –
a population-differentialtechnique – that allows us to
profile and distinguish an assortment of coevolutionary
successes and failures, including arms-race dynamics,
disengagement, cycling, forgetting, and relativism.

Introduction
Coevolution requires no domain-specific notion of objective
fitness, enabling coevolutionary algorithms to learn in do-
mains for which no objective metric is known or for which
known metrics are too expensive. But this benefit comes at
the expense of accountability, as there is consequently no
external metric with which to measure an algorithm’s per-
formance. Responses to this feedback void have come in the
form of propositions for dynamics-based progress metrics.
The most frequently used metrics have all been based upon
Current Individual versus Ancestral Opponent (CIAO) plots
(Cliff & Miller 1995). The CIAO plot offers useful feedback
on performance, but does have limitations. In this paper,
we focus primarily on one such limitation: the inability to
provide feedback on coevolutionary failures. We present a
related alternative, which could be called a Current Popula-
tion versus Ancestral Opponent (CPAO) plot. We then offer
one metric based upon the data in this plot.

One inherent difficulty in proposing metrics for processes
lacking objective fitness valuations is that such metrics can-
not be proved accurate. In order to address this, we examine
a simple coevolutionary domain that is measurable, and look
for corroborating results. The simple domains used for algo-
rithmic auditing in this paper are the Numbers Games, intro-
duced in (Watson & Pollack 2001). This is particularly rele-
vant, as that work focused on addressing counter-productive
behaviors in coevolutionary systems, often responsible for

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the failures for which we are interested in acquiring feed-
back. The final example presented uses a domain – Rock-
Paper-Scissors – that possesses no objective metric. While
the results drawn cannot be corroborated by such a metric,
they are consistent with the cyclic nature of the game. We
present this set of examples after reviewing existingCIAO-
based techniques and presenting aCPAO-based alternative.

Best-of-Generation Techniques
Analysis based on generation tables was first proposed in
coevolution by (Cliff & Miller 1995) based onCIAO data,
and this work has subsequently been explored and built upon
in several ways, including the Masters Tournament (Flore-
ano & Nolfi 1997), the Dominance Tournament (Stanley &
Miikkulainen 2002), and the Hall of Fame (Rosin & Belew
1997). In two-population coevolution, ageneration table
assigns the table rows to the first population’s sequence of
generations, and assigns table columns to successive gener-
ations of the second population. Internal table entries con-
tain the results of evaluating the combination of the corre-
sponding row and column generations. For data visualiza-
tion, Cliff and Miller turn their tables into bitmap images
(one pixel per table entry), and this paper employs a slightly
modified version of that pixel-per-entry approach.1

This organization of data is valuable in making apparent
the Red Queen effect: values drawn from evaluations along
the table’s diagonal2 are simply incomparable to one an-
other. Graphs displaying thisinstantaneous fitnessover time
are excellent illustrations of the Red Queen effect (see Fig.
1.) Generation table values are only comparable if either the
candidate or the test is kept constant. For example, if one
knows how a candidate at timet performs against some test
T and one knows how the candidate at timet + 1 performs
against that same test, comparing the results may provide
an indication of progress over time. If the second candidate
were evaluated against something other thanT , however, the
comparison of results could no longer claim to be a valid in-

1The figures included in this work are oriented differently from
Cliff and Miller, however. In this paper, the initial generation is
placed in the upper-left. Additionally, the data for the entire gener-
ation table is calculated here.

2Specifically, the diagonal for which theith candidate genera-
tion is evaluated using theith test generation.

Generation (T)
G

en
er

at
io

n
 (

C
)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Generation (T)

G
en

er
at

io
n
 (

C
)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Generation (T)

G
en

er
at

io
n
 (

C
)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Candidate Passed Test

Candidate Tied Test

Candidate Failed Test

Figure 1: These three generation tables were constructed todemonstrate that dramatically different simulations can yield
identical Instantaneous Fitness data. The instantaneous fitness of each simulation is based only on the 10 cells along the dotted
diagonal line. Note that in all figures including generationtables in this paper, candidate generations increment fromtop to
bottom, and test generations increment from left to right. Each cell in the table represents an evaluation of the corresponding
row (candidate) and column (test).

dicator of progress.3

As noted in (Ficici & Pollack 2003), because of the his-
tory of single-objective fitness measurements, almost all ap-
proaches in the literature (including those cited above) con-
cern themselves solely with the “best-of-generation” (BOG)
member of each population. No other individuals are re-
tained for analysis. This BOG approach appears partic-
ularly problematic for two reasons. First, results of an
analysis can vary with the definition of “best” population
member. (Cliff & Miller 1995; Floreano & Nolfi 1997;
Stanley & Miikkulainen 2002) all adopt the Last Elite Op-
ponent4 criterion proposed in (Sims 1994), but it should
be noted that any number of alternate definitions may be
equally plausible. Indeed, the coevolutionary algorithm un-
der examination may itself define “best” differently. Pareto
coevolution, for example, would define “best” as the subset
of individuals along the Pareto front. Second, while BOG-
based analysis may give insight into algorithmic dynamics
of the highly-successful individuals, it provides little about
the population as a whole. While no claims were made about
these monitors regarding sensitivity to failure, it ought to be
noted that these BOG techniques are not sufficient to detect
the common coevolutionary failures detailed in (Watson &
Pollack 2001).

All-of-Generation Techniques
We introduce an alternative that addresses the shortcom-
ings of BOG-based methods in monitoring failure based
upon “all-of-generation” (AOG) data evaluation. For the
sake of generality, the technique presented here is designed
for simulations involving two asymmetric populations, but
it is equally applicable to symmetric two-population simu-

3Note that the Master Tournament (Floreano & Nolfi 1997) re-
spects value comparability by restricting aggregations to within
rows and or within columns. The Master Tournament attributes
the summation of each row and column of a given generation as
that generation’s subjective fitness.

4An individual is defined to be the “best” of its generation if it
outperforms its peers when pitted against the “best” member of the
previous opponent generation.

lations and to single-population simulations (via partition-
ing.) Adopting terminology from (Bucci & Pollack 2003b),
we refer to these as populations ofcandidatesand tests.
This choice is meant to draw attention to the type of feed-
back resulting from evaluating a pair of elements. In order
to minimize domain-specificity, the result of acandidate-
test evaluation is simply one element of the ordered set
R = {candidateFailedTest < candidateT iedTest <
candidatePassedTest}, as in (Bucci & Pollack 2003b).

Population-Grained Evaluation
Where an entry in Cliff and Miller’s generation table is the
result of evaluating the “best” candidate against the “best”
test for the specified generations, an entry in an AOG-based
generation table must somehow represent the result of eval-
uatingall candidates againstall tests for the specified gener-
ations. Where individual-grained evaluation is well-defined,
population-grained evaluation must be introduced. We sim-
ply average the numeric results of evaluating all candidates
against all tests:5

PopEval(Ci, Tj) =

∑

c∈Ci

∑

t∈Tj

eval(c, t)

|Ci||Tj |

whereCi is the ith-generation candidate population and
Tj is thejth-generation test population. Numeric values re-
sult from implementing the ordered set R ={−1 < 0 < 1}.
This results in scalar values between -1 (if all candidates fail
all tests) to 1 (if all candidates pass all tests.) In the figures
in this paper that include AOG data graphically, we map this
scalar value to a grayscale value (where -1 is pure black, 0
is 50% gray, and 1 is pure white.)

Example: CIAO vs. CPAO

The difference between BOG and AOG data can now be elu-
cidated with a simple example. Consider a two-population
coevolutionary process that progresses for 10 generations, in

5Averaging may not be appropriate for all applications. We use
it here for simplicity.

Generation (T)

G
en

er
at

io
n
 (

C
)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Generation (T)

G
en

er
at

io
n
 (

C
)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

All Candidates Passed All Tests

All Candidates Failed All Tests

Figure 2: BOG data(left) and AOG data(right) can offer notably conflicting views of the same coevolutionary process. These
generation tables were generated from a coevolutionary process described in the section entitled “Example:CIAO vs. CPAO”.
Each table cell is shaded based on the percentage of candidates (in the corresponding row) passing/failing the tests (inthe
corresponding column.)

which each population contains 10 individuals. In this sim-
ulation, let each individual be represented an integer, andlet
all individuals initially start at 0. Candidate/test evaluation
is as follows: If a candidate is a larger integer than the test,
the candidate “passes” that test. If a candidate is the same
integer as the test, the candidate “ties” that test. If a candi-
date is a smaller integer than the test, the candidate “fails”
that test. (Since all individuals are initialized at 0, all mem-
bers of the candidate population initially “tie” all members
of the test population.) Suppose the coevolutionary process
proceeds as follows: Over the course of the 10 generations,
one candidate and one test each mutate at a rate of +1 per
generation, while the other nine individuals in each popula-
tion mutate at a rate of -1 per generation. When the BOG
and AOG data is plotted for this coevolutionary process, the
pictures that emerge (Fig. 2) are dramatically different.

This simulation, drawn from one-dimensional variation
of the Numbers Game domain (Watson & Pollack 2001), is
provided as an example of how different the two sets of data
may be. The BOG data suggests that the process exhibited
and sustained some positive progression throughout the sim-
ulation, while the AOG data offers a different perspective,in
which most of the change in the two populations was nega-
tive, and only a small fraction of the populations exhibited
any positive progression. The value – and drawbacks – of
both approaches are apparent here. While BOG data is not
appropriate for all applications, neither is AOG data. It isup
to the experimenter to select an approach that is appropriate
to the task at hand. AOG-based techniques expand the set
of available progress monitoring approaches, allowing for
feedback that had previously been ignored or suppressed.

Computational Complexity

Clearly this change from BOG- to AOG-analysis increases
the computational complexity of evaluation. Assuming pop-
ulation sizes remain constant (at|C| candidates and|T | tests
per population), ag-generation simulation can be described
as follows: a simple BOG analysis requiresg2 +g|C|+g|T |
evaluations (where the second and third terms are the cost of
computing the Last Elite Opponent), while a simple AOG-

based analysis requiresg2|C||T | evaluations. While AOG-
based analysis may not be feasible for domains in which
evaluations are computationally intensive, much of the ad-
ditional computational burden of switching from BOG to
AOG can be alleviated by implementing amemory policy.

Memory Policies
Rather than computing every table entry in the generation
table, one can restrict computation to arepresentative subset
of entries, and base analysis on only this data. While we will
not address the issue of optimally specifying “representative
subset” here, we do provide examples of simple example
subsets. Populating a generation table, as described above,
involves evaluating all previous generations of one popula-
tion against the current generation of the other population,
and vice versa. This can be recast as amemory-maintenance
operation: At each generation, add the new test population
to a “test-memory”, add the new candidate population to a
“candidate-memory,” and remove nothing from either mem-
ory. Then evaluate the new candidate population against ev-
erything in the test-memory and evaluate the new test popu-
lation against everything in the candidate-memory.

Viewed as a “lossless” memory policy, the full generation
table is defined simply: add each new generation and never
remove any old generations. Two simple memory policies
– both originally suggested in (Cliff & Miller 1995) – are
presented below and illustrated in Fig. 3. The coevolution-
ary simulation examined in this figure is from a Pareto hill-
climbing algorithm attempting the Compare-on-One variant
of the Numbers Game, introduced in (de Jong & Pollack
2003). In this game, a hill-climber is used in which can-
didate selection is based on Pareto Dominance and test se-
lection is based oninformativeness, as defined in (Bucci &
Pollack 2003b). The simulation was run for 400 generations
with a fixed population size of 25 in both populations.6

6The mutation rate in all examples in this paper is 1.0. Num-
bers Game representation is integer-based, with mutation operating
as follows: A pseudorandom, Gaussian distributed number (with
mean 0.0 and standard deviation 1.0) is scaled by 4 (fixed mutation
size), rounded to the nearest integer, and added to the current value.

Lossless Memory Bounded Memory Sampled Memory

AOG Generation Table

Generation (Test)

G
en

er
at

io
n
 (

C
an

d
id

at
e)

4
0
0

0
400 Generation (Test)

G
en

er
at

io
n
 (

C
an

d
id

at
e)

4
0
0

0
400 Generation (Test)

G
en

er
at

io
n
 (

C
an

d
id

at
e)

4
0
0

0
400

AOG from Memory Contents

Generation (T)

G
en

er
at

io
n
 (

C
)

4
0
0

0
400

Gen. (T)

G
en

.
(C

)
4

0
0

300 400 Gen. (T)

G
en

.
(C

)
4

0
0

0 400

Figure 3: Illustration of three memory maintenance policy implementations. The upper images display all collected data in the
generation table, and the lower images display evaluationsbased only on these memory contents following thefinal generation
of the simulation.Note on subsequent AOG figures: The grayscale percentage of each pixel is set to the percentage of all
corresponding evaluations for which the candidate fails the test.

Lossless Memory The AOG techniques described above
can be considered “lossless”. All generations in a simulation
are added to the generation table and never removed, and
are actively evaluated for every generation of the simulation.
This is implemented as a list, to which each new generations
is appended, in turn. This memory policy, as stated above,
requiresg2|C||T | evaluations for the analysis.

Sliding-Window Memory By implementing the memory
as a fixed-size FIFO queue, the size of the memory can be
easily bounded. A sliding-window memory, given window
boundb < g, requires(2bg − b2)|C||T | evaluations. At
one extreme, when the queue-size is set to the number of
generations in the simulation, this memory is equivalent to
the lossless memory policy described above. At the other
extreme, a queue of size 1 effectively eliminates the notion
of memory entirely, and the computation required is limited
to that of the algorithm itself. In between lies a spectrum of
tradeoff between accuracy and efficiency.

When the period of some cyclic behavior exceeds the
memory window size, that cycle will not be discernible in
the resulting AOG data. Similarly, other behaviors that ex-
ceed the memory window size may also yield misleading
data. An example of one such behavior is illustrated in Fig.
4. A single coevolutionary process is plotted twice. In this
process, a fitness-proportional coevolutionary algorithmis
used on the Intransitive Numbers Game, with 15 individu-
als in each population and 600 generations computed. In the
left-hand image, a 50-generation memory window is used,
and in the right-hand image, a 300-generation window is
used. The discrepancy between these two images suggest
that the 50-generation memory offers an incomplete, mis-
leading view of the process. The contents of this memory
cannot be considered a representative subset of the memory.

Memory size: 50

Generation (Test)
G

en
er

at
io

n
 (

C
an

d
id

at
e)

6
0

0

0
600

Memory size: 300

Generation (Test)

G
en

er
at

io
n
 (

C
an

d
id

at
e)

6
0

0

0
600

Figure 4: Increasing the sliding-window sizeb may reveal
behavior that was not apparent with the shallower memory.

Sampled Memory Dramatic computational savings can
be achieved by selectively adding populations to memory.
If only every jthgeneration is added to the memory, com-
putation is reduced by a factor ofj2. For further savings,
sampling can be used in conjunction with a sliding-window,
requiring only(2b(g/j) − b2)|C||T | evaluations.
Concept-Specific Memory The population-differential
monitor can simulate a Dominance Tournament (Stanley &
Miikkulainen 2002) simply by implementing the following
memory policy: If the best individual (according to the Last
Elite Opponent) of the current generation beats all members
of the other population in memory, add that individual to the
memory. The individuals in memory are then the generated
sequence of dominant strategies. This ability to easily sim-
ulate the Dominance Tournament may lead to better under-
standing the similarities and differences between these two
approaches.

Population-Differential Analysis
Next we construct a perfomance measure based on the data
available in the memory. Nolfi and Floreano addressed this
by averaging data per generation (Floreano & Nolfi 1997),
but this can make certain trends less apparent. Thecycling
problemassociated with games with intransitivities, is an ex-
ample of one such trend. As an alternative, we propose a
comparison between the population in question and the old-
est population in memory as a better indicator. The method
presented below is appropriate for two-outcome evaluations
(e.g.R = {loss < win}), and certain three-outcome evalu-
ations (e.g.R = {loss < tie < win}). To begin, we define
apopulation comparator(PC) conditionally:

PCTk
(Ci, Cj) =

{

1, if PopEval(Ci, Tk) > PopEval(Cj , Tk)
0, if PopEval(Ci, Tk) = PopEval(Cj , Tk)

−1, if PopEval(Ci, Tk) < PopEval(Cj , Tk)

where i > j, Ci and Cj are theith and jth candidate
generations, respectively, andTk is thekth test population.
Candidate-based comparators are defined similarly:

PCCk
(Ti, Tj) =

{

1, if PopEval(Ck, Ti) < PopEval(Ck, Tj)
0, if PopEval(Ck, Ti) = PopEval(Ck, Tj)

−1, if PopEval(Ck, Ti) > PopEval(Ck, Tj)

wherei > j, Ti andTj are theith and jth test gener-
ations,respectively, andCk is thekth candidate population.
Intuitively, a population comparator reflectsdirectionalityof
change over time.

Thecandidate-population performanceat generationi is
defined to be the average of the population comparators be-
tween the newest candidate population (Ci) and the oldest
candidate population currently in the memory, with respect
to all test populations currently in memory:

CandPerfi =

∑

Tk∈T

PCTk
(Ci, Coldest)

|T |

Similarly, the test-population performanceat generation
i is defined to be the average of thepopulation compara-
tors between the current test population and the oldest test
population in the memory, with respect to all candidate pop-
ulations currently in memory:

TestPerfi =

∑

Ck∈C

PCCk
(Ti, Toldest)

|C|

The population-differential metric,PD, is simply the aver-
age of these two performance levels:

PDPerfi =
CandPerfi + TestPerfi

2

ThePD method generates one scalar value per generation
for each population, ranging from -1 (when the eldest pop-
ulation outperforms the current population in every possible

way with respect to the memory) to 1 (when the current pop-
ulation outperforms the eldest population in every possible
way with respect to the memory).

By restricting attention to only the current state and the
oldest recorded state, a population-differential analysis does
not reward or penalize for localized variability. Additionally,
this reduces the computational complexity of performance
calculation. (For a memory of sizen, only 2n comparisons
need to be calculated.) These performance measures reflect
thedirectionality of changeover available memory.

Results
In order to demonstrate the value of the population-
differential performance monitor, the first four examples
presented useNumbers Gamevariants as a domain (Watson
& Pollack 2001).In these games, tests and candidates are
each a point on a two-dimensional integer grid. Mutation
simply moves an individual to a nearby location. Evaluation
of candidate-test pairs is done as follows: In the Compare-
on-One game, individuals are compared according to the in-
teger value of the dimension in which the test is larger. In
the Intransitive game, individuals are compared accordingto
the integer value of the dimension in which they are closer.
These domains are used here because they are simple and
they offer an acceptable external metric7 that can be used to
support or challenge thePD monitor. The fifth example uses
the Rock-Paper-Scissors game as a domain, showing that the
performance monitor can provide useful insight into games
with no such external metric.

We examine five known coevolutionary behaviors here,
which are labeled as follows in the figures below:arms-
race dynamics, lock-in failure, variations, disengagement,
andcycling.For each of the five, we describe what an ideal-
izedPD profile of each behavior ought to be, then we exam-
ine actual sample runs to see how they compare. For each
sample, aPD chart is presented along with the corresponding
Objective Fitness chart and AOG-based grayscale map. All
three graphs share the same scale along the x-axis, allowing
the reader to visually align the data from all three images for
simple visual analysis.

Behavior Profiles
Interpretation of such performance graphs with respect to
coevolutionary success and failure can be profiled as fol-
lows: An arms-race dynamicwould yield a sustainedPD
value at or near 1, as both populations consistently do bet-
ter later in time than they did earlier in time.Lock-in fail-
ure would yield a sustained value near -1, as the opposite
is generally true, with the exception of localized progress.
Variation is merely meant to describe a simulation for which
the objective fitness graph switches direction several times.
We would expect the performance monitor to register above
zero on the inclines and below zero on the declines.Disen-
gagementwill yield a sustained value at zero once gradient
is lost. Cycling will be visually apparent in the grayscale
memory map. Note that in all cases, thePD monitor will

7The objective fitness of a population is defined to be the aver-
age sum of individuals’ x- and y-coordinates.

Generation (Test)
G

en
er

at
io

n
 (

C
an

d
id

at
e)

4
0
0

0 400

 0

 200

 400

 0 50 100 150 200 250 300 350 400

Generation

Average objective fitness values

Candidates
Tests

 0

 200

 400

 0 50 100 150 200 250 300 350 400

Generation

Average objective fitness values

Candidates
Tests

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

Figure 5: Arms-race dynamics. Pareto hill-climbing algo-
rithm on Compare-on-One Numbers Game domain.

lag behind behaviors in the simulation by a fixed distance,
determined by the size of the sliding memory-window.

Discussion

Each of the above theoretic performance profiles can now be
compared to corresponding empirical samples.

For thearms-race dynamicexample in Fig. 5, we in-
clude a 400-generation run (with fixed-sized populations of
25) from a Pareto hill-climbing algorithm (Bucci & Pollack
2003a) attempting theCompare-on-OneNumbers Game (de
Jong & Pollack 2003). Objective fitness in both populations
steadily improves, and this is accurately characterized by

Generation (Test)

G
en

er
at

io
n
 (

C
an

d
id

at
e)

3
0
0

0 300

-1200

-1000

-800

-600

-400

-200

 0

 200

 0 50 100 150 200 250 300

Generation

Average objective fitness values

Candidates
Tests

-1200

-1000

-800

-600

-400

-200

 0

 200

 0 50 100 150 200 250 300

Generation

Average objective fitness values

Candidates
Tests

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

Figure 6:Lock-in failure.Fitness-proportional coevolution-
ary algorithm on Intransitive Numbers Game domain.

the monitor. The AOG memory map reveals a remarkably
smooth gradient. Note that progress in the two populations
looks similar to the monitor, despite the varying rates re-
vealed in the objective fitness graph. They appear equally
good to the monitor becausePD suggests thedirection– and
not rate– of change over time.

The lock-in failure of Fig. 6 was from a fitness-
proportional coevolutionary algorithm attempting theIn-
transitiveNumbers Game. The population sizes were fixed
at 20 individuals, and the simulation ran for 300 generations.
A short run of initial progress is recognized by the monitor,
which is gradually replaced by a near-bottom value as the

Generation (Test)
G

en
er

at
io

n
 (

C
an

d
id

at
e)

4
0

0
0 400

-400

-200

 0

 200

 400

 600

 800

 0 50 100 150 200 250 300 350 400

Generation

Average objective fitness values

Candidates
Tests

-400

-200

 0

 200

 400

 600

 800

 0 50 100 150 200 250 300 350 400

Generation

Average objective fitness values

Candidates
Tests

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

Figure 7:Variation. Fitness-proportional coevolutionary al-
gorithm on Intransitive Numbers Game domain.

two populations settle in to a locally-improving but globally-
detrimental pattern. Note how this pattern visually resounds
in the grayscale map. Also, note how the 100-generation
bounded-memory size causes a 100-generation lag between
activity in the simulation (visible in the objective fitness) and
the values in the performance monitor.

Thevariationevident in Fig. 7 was generated by a fitness-
proportional coevolutionary algorithm again attempting the
Intransitive Numbers Game. The population sizes were
fixed at 20 individuals, and the simulation ran for 400 gener-
ations. Note that the mid-level value (settling between 0 and
1) of the monitor at the conclusion suggests that the final up-

Generation (Test)

G
en

er
at

io
n
 (

C
an

d
id

at
e)

3
0
0

0 300

-200

 0

 200

 400

 0 50 100 150 200 250 300

Generation

Average objective fitness values

Candidates
Tests

-200

 0

 200

 400

 0 50 100 150 200 250 300

Generation

Average objective fitness values

Candidates
Tests

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

Figure 8:Disengagement.Fitness-proportional coevolution-
ary algorithm on Intransitive Numbers Game domain.

swing was characterized bylearning-and-forgetting, rather
than a truearms race. The memory map image supports this,
showing that only one of the two populations could retain its
behavior over time.

The disengagementthat occurs in Fig. 8 was generated
by a fitness-proportional coevolutionary algorithm again at-
tempting the Intransitive Numbers Game. The population
sizes were fixed at 20 individuals, and the simulation ran for
300 generations. The disengagement is recognized once the
memory-window slides beyond it, leaving a continuous trail
at zero, with no progress beyond that. The notion ofloss-of-
gradientis visually apparent in the grayscale AOG data.

Generation (Test)

G
en

er
at

io
n

 (
C

an
d

id
at

e)
6

0
0

500 600

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

Generation

Population-differential performance

Cand-Performance
Test-Performance
PD-Performance

Figure 9: Cycling. Coevolutionary hill-climbing algorithm
on Rock-Paper-Scissors domain. Note that no objective fit-
ness graph is present, because no such fitness values are
available for the Rock-Paper-Scissors domain. An enlarged
100-generation subsection of the AOG generation table is
shown at top.

Finally, thecycling visible in Fig. 9 results from a co-
evolutionary hill-climbing algorithm attempting the game
of Rock-Paper-Scissors. The population sizes were fixed at
20 individuals, and the simulation ran for 600 generations.8

The intransitive superioritiesinherent in this game lead the
algorithm in circles (a Pareto hill-climber, for contrast,does
not fall into such cycles.) ThePD monitor stays near zero,
and any sort of smoothing would make this even more ap-
parent. Note that since this domain has no suitable objective
fitness metric, no such graph can be included here. A sub-
section of the AOG-memory map is enlarged to display the
visual appearance of cycles in memory.

Conclusion
The AOG-based framework introduced here seems particu-
larly well-suited to the coevolutionary monitoring task, as
it is sensitive to the full spectrum of anomalies detailed in
(Watson & Pollack 2001). The major drawback of switch-
ing from a BOG-based technique to an AOG-based tech-
nique is the additional computational burden, but this can be
alleviated through design of the memory-maintenance pol-

8Individuals in the game are represented as either a Rock, Paper,
or Scissors. Mutation randomly yields any one of these three states.

icy. The population-differential monitor then builds on this
AOG-based data, just as the Masters and Dominance Tour-
naments build on BOG-based data. The richness of the re-
sults is significant, expanding the set of coevolutionary be-
haviors that can be effectively recorded and visualized. The
ability to identify and track arms-races, Red Queen effects,
and various anomalies discussed in this paper may lead to
an ability to adaptively control coevolution while maintain-
ing continuous learning.

References
Bucci, A., and Pollack, J. B. 2003a. Focusing versus intran-
sitivity: Geometrical aspects of coevolution. In Cantú-Paz,
E., et al., eds.,Genetic and Evolutionary Computation -
GECCO 2003, volume 2723 ofLecture Notes in Computer
Science, 250–261. Springer.
Bucci, A., and Pollack, J. B. 2003b. A mathematical frame-
work for the study of coevolution. In De Jong, K. A.; Poli,
R.; and Rowe, J. E., eds.,Foundations of Genetic Algo-
rithms 7. San Francisco: Morgan Kaufmann. 221–235.
Cliff, D., and Miller, G. F. 1995. Tracking the red queen :
Measurements of adaptive progress in co-evolutionary sim-
ulations. In Moran, F.; Moreno, A.; Merelo, J.; and Cha-
con, P., eds.,Advances in Artificial Life: Proceedings of the
Third European Conference on Artificial Life, volume 929,
200–218. Berlin: Springer-Verlag.
de Jong, E. D., and Pollack, J. B. 2003. Learning the
ideal evaluation function. In Cantú-Paz, E., et al., eds.,Ge-
netic and Evolutionary Computation – GECCO-2003, vol-
ume 2723 ofLNCS, 274–285. Chicago: Springer-Verlag.
Ficici, S. G., and Pollack, J. B. 2003. A game-theoretic
memory mechanism for coevolution. In Cantú-Paz, E.,
et al., eds.,Genetic and Evolutionary Computation –
GECCO-2003, volume 2723 ofLNCS, 286–297. Chicago:
Springer-Verlag.
Floreano, D., and Nolfi, S. 1997. God save the red queen!
competition in co-evolutionary robotics. In Koza, J. R.,
et al., eds.,Genetic Programming 1997: Proceedings of the
Second Annual Conference, 398–406. Stanford University,
CA, USA: Morgan Kaufmann.
Rosin, C. D., and Belew, R. K. 1997. New methods
for competitive coevolution. Evolutionary Computation
5(1):1–29.
Sims, K. 1994. Evolving 3d morphology and behavior by
competition. In Brooks, R. A., and Maes, P., eds.,Proceed-
ings of the 4th International Workshop on the Synthesis and
Simulation of Living SystemsArtificialLifeIV , 28–39.
Cambridge, MA, USA: MIT Press.
Stanley, K. O., and Miikkulainen, R. 2002. The dominance
tournament method of monitoring progress in coevolution.
In Barry, A. M., ed.,GECCO 2002: Proceedings of the
Bird of a Feather Workshops, Genetic and Evolutionary
Computation Conference, 242–248. New York: AAAI.
Watson, R. A., and Pollack, J. B. 2001. Coevolutionary
dynamics in a minimal substrate. In Spector, L., et al.,
eds.,Proceedings of the 2001 Genetic and Evolutionary
Computation Conference. Morgan Kaufmann.

