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Abstract 

NGLAIIBER is a system which models the scientific discoverv 
of qualitati ve empirical laws. 
of screntitic discovery systems. 

. !  

As such, it falls into the category 
liowever, NGLAUBICR can also be 

viewed as a conceptual clustering system since it forms classes of 
objects and characterizes these classes. NGLAUHEH differs from 
existing scientific discovery and 
a number of ways. 

conceptual clustering systems in 

I. It uses an incremental method to group objects inlo classes. 
2. These classes are formed based on the relationships between 

objects rather than just the attributes of objects. 
3 The system descri bes the relationships between 

rather than simply describing the class&. 
4. Most irriportantly, NGLAUHEH proposes 

predicting future data. The experirnents help the syster& 
guide itself through the search for regularities in the data. 

Study ing scientific discovery from a rriachine learning point 
of view is still a relatively new idea. So far there have been 
only a few systerns which atternpt to model aspects of this area 
(5,7j. In this paper we will discuss NGLAUIWH, a system which 
searches for regularities in scientific data and makes predictions 

classes 

experiments 

I Irltroduc t ion 

about them. NGLAUBEH is based on an earlier system called 
( il,AlIl~~+;H [6] but contains a number of differen& from that 
system. 
~“‘“f3 ex 

NGLAUBER 
perirnents to 

accepts 
improve 

its 
its 

input incrementally and pro- 
characterizations of the input. 

We will discuss N(:LAUBEH’S architecture and give a simpli- 
fied example of NGLAIIIMX at work. Finally, we will discuss 
N(;LA~I UER’S relation to other systems in the area of machine 
learning. These include concepttial clustering systerns and sys- 
terns which rnodcl scientific discovery. 

II Data representation in NGLAUHEK 

‘I’0 I)egin our discussion of the NGLAu 
scribe the data representation scheme. 

we wi II de- 
deals with 

four basic entities. These are fucts, nonfucts, prenic/ions and 
The two basic units cjf data are objects and :,fatements. 
are the iterrls which are described by statements. Ally- 

thirlg cau be an object, fruni a block to a chemical to a qual- 
ltative description. Every stateIuent is composed of a relation 
nar~~e, a set of input objects (or ilidependent variables), and a 
set of output objects (or dependent variables). The general form 
is rrlatlon( { InpI, . . ,Inpm}, { OuLl, ,Out,,}). For exarnple, a 
stattament describing tile taste of tile chemical NaCl would look 
like 

tuste( { Na<:l}, {salty}) 
which sirrlply means that NaCI tastes salty. 

Statements may also be quantified over any classes that have 
been formed. For illstance if the salts were the class of all chern- 
icals which taste salty, then the following fact might appear irl 
rrieuiury : 

Vz E salts: tuste( {z}, {salty} 
If SOIne but not all of the salts tasted salty, t,tlis statement 
would be existentially quantified (3) rather than universally 
quaIltltied (V). 

Facts, nonfacts and predictions are just sets of statements 
which have special meanings to NCLAUMX. A fact simply repre- 
sents a staternttnt which N(:LAIIBEH knows is true. III contrast, 
a nonfact looks just like a fact, but it represents a statement 
which N(;I,AIIUER knows is not true. A prediction is represented 
as a pair uf staterrlents (Prediction, For), where Prediction is a 
statement which NGLAUHEIL believes may be true and For is a 
statement which is true if the Prediction is true. An exatnples 
is the prediction 

Prediction: taste({KCI}, {salty}) 
For: VL t salts : taste({x}, {salty}) 

If NGLAIJHP:R makes this prediction It is saying that it will 
know that all salts taste salty If it sees that KCI tastes salty 
(KC1 is a member of the class of salts). The I’redlction part of 
a prediction is always an instantiation of the For part. 

Classes are sets of objects which appear as lriput or output 
values in various statements. A class is formed when a set of 
objects is found to have properties in common based on existing 
facts. The class of salts might be stored iu nir~rriury as 

salts {NaCI, Kc:l) 
‘I’tie classes are used to allow simple statements lo be rewritten 
as quautified statements as shown above. The exact methods 
for forming classes and quantifying stateIrlerlts wrll be detailed 
later. 

NGLAIJBEH is an increrllental discovery system with the abll- 
ity to rnake predictions about the data it is given.* These two 
properties are natural companions for a number of reasons. It 
is unnecessary to make predictions with an all-at-once systrlll 
because the systtlril knows 11~1 Illore data is conling. ‘rhe abil- 
lty to IIlakc pretiic.tioIls is rnadt, possible by irrcrerrlentality. For 
NGLAIIHER’S task, rrlaking predictions is not only dc>sirable, but 

Iieccssary. This is bf7ause when facts are quantified so111f.2 in- 
forlrlation can be lost. t’rttdictions allow that infornlation to be 
retalrled. ‘I’his prot,lt~Irl will be discussed rnorc cuIIipletely laler. 

l,angley, et al 161 describe (;I,AuBER as a set of operators 
being ,rppIled cyclically to a working memory. ‘I’he same ap- 
proa(‘h c~)uld be used to describe NGI,A[I~~IC:H but there IS so 
niuch rnttbrar’tloIl bt~twerrl various rules that it is [Ilore conve- 
nienl tu divide the systtsrtl illto four n1a111 mrchunisrns. We will 
desc.ri bca 1:ac.h of ttlc+,rb rriec-hanisrns in turn ‘l’tley are referred 
to as the Introduction Itlt*cllanism, the predictho nlechanisn1, 
the prediction sutiajuctlon mechanism, and tl~e drniuf rnecha- 
oism. These Irit:c.harIisms can also be considered in two separate 
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b”“ll[J”. The introducliun, prediction, and prediction satisfac- 
LIOII rncc.Ilanisms work together in a highly recursive nlanner to 
create classes and quantified facts. The denial rnechanisnl works 
srbparately lo prutle ~CJWU the riurtiber of predictions in memory 
ar14 to handle t.he nonfacts. 

‘1’111s is the tnain section of the NGLAUBEH system. When 

V The preclictiou rr~ecliariisrrl 

‘l’here are certain prolJle1rIs assc,clated with N GLAUUKR’S in- 
LrtJdllcLiou tIlechalllstil due to iLs irlc.rollient,alit,y. At any given 
pu1111 ill time, the systelrl does Ilot know rf it has see11 all the 
data it, IS going to see. ‘t’herefore, it assurlles that it will receive 
no IIIor<’ input when forrrliug its classes arid facts. Iiowever, it 
tilubl also be flexible etlougll Lo alter its rrleltlory in a correct, and 
irfJ[JI-OlJriak Illatltlef if it, dcJeS recc!iVe IIlOrcf iIlpUts. 

:I dc:sirable characteristic for suc.h a systerrl is Lo have suItle 
vxp~‘Lallori of what it WIII bet: irl ttie future. When possi Me, 
5’~: LAI 1)~~‘s prediction rnechanlsrll perfornls this c,ask. I’redic- 

t.l(Jllh are Inade which will allow ttte systetn to easily expand iis 
facts wt1r.n the predicL.lons are satisfied. 

‘I’tre IJredlctiun nrechanisrrl works or1 the assunlption that every 
t~xl~l,cIlltially quantified fact can eventually become a universally 
quarlLifir:d fact if the proper dat,a IS seen. Referring to the exam- 
ple iI1 I,tle previous section, when clusbl is formed the following 
predlct.iotl is also made 

prediction: ahuye( ( t,lockZ}, {cube}) 
for: V1: t classl. s/~~~~c({G}, {cube}) 

‘l‘tlt: Implicit assumption irl LIIIS type of prediction making is 
Lhal tIlc. domain is highly regular. NC~,AIIH~~H believes t,hat if 

“1~1 coi~trdst, ( ~I,AlIUlGIi IS &LI~ .Lll at c~llce systtnl. l3ec;rutie uf this, 
Nl :LAIII:EII’S cxiteriurl for faming a HZW class: is quite ;L bit differcut frtim 
I ;I.Al’lII~:li’s. 

objects have one thing in common then they will probably have 
niany things in common. Therefore, when it sees that block1 
and block:! are both blue and that block1 is a cube, it decides 
tllat block2 will probably be a cube too. 

The predictions in NGLAuL~EK’s memory are generally highly 
iliterrelated There c’arl be many predictions with the same yre- 
diction part. I,ikewise, there can be many predictions with the 
sarrie 107 part. The set of predictions with the same for part is 
called a prediction yrouy. Also, the fur statement that is com- 
mon to every prediction in a group is called the hyyothe& of 
the group. Another way to think of the predictions in a predic- 
tion group is as a conjunctive implication. To know that the for 
statement in a prediction is true, it is not enough for just one 
prediction to he satisfied. Rather, every predict,ion in the same 
group must be satisfied before it is known that the fur statement 
(i.e. the hyp~Jh!SiS) is true. 

It can be seen that the predictions also conveniently solve 
thr loss IJ~ inforrnatiori problem mentioned earlier. When 
the fact shupe( { block 1)) {cube}) is q uantified to 3~ E classl: 
shape({r},{cut)e}), p re IC ions are made at the same time. d’ t 
These predictions act as sort of a sieve. They tell NGLAUBEH 
wllich statenlents have not yet been seen, so it also knows which 
statements have been seen. The net result is a reorganization of 
infortrration with no loss. A benefit of this is that NGLA~JBEH 
will COIIW up with the same classes and facts for a given input 
set regardless of the order of Ihe input. This is a trait which IS 
often not (‘i hi bited by increrriental systems. 

VI The predictiorl satisfactiorl rrwchanisrn 

Working hand in hand with the prediction mechanism is the 
predict,ion salisfaction mechanism. The prediction satisfaction 
nlecllanisrn is invoked by the introduction mechanism to see if 
the current fact has been predicted by the systerrl. Satisfying a 
predicliotl is usually just a matter of ‘checking off’ the fact from 
the list of predictions kept in rrterrtory. When a predicted fact is 
introduced to the system, all predictions uf that fact are removed 
from tI1emory. Often this is the only thing that happens when 
this trterhartisrtt is invoked. 

A special case occurs when the last predictiun in a predic- 
tiott group is removed from memory. As explained earlier, 
NC; LAUHKR knows at, this point that the hypothesis of the pre- 
dicLion group is true. This allows NCLALIBER to make stronger 
claitrts about the data it is considering. When this occurs, the 
prediction mechanism invokes the introductiott tttecttanisrrt with 
the tleWly CCJrlfirrrlet~ fact. ‘CbS CotIlpleteS the rf2cllrSiVe cycle be- 

twectt t.tte first t,hree tttrcttartistrts. When NC;I,A~IHM introduces 
a new fac.L to itself via the prediction satisfaction rrlechanism, 
the cycle begirls again. New predictions tttay be made or satis- 
fied, and new classes tnay be formed by the itttroduction of the 
11ew fact 

VII The denial rnecharlisrn 

‘l‘l~e final IIlechanism lo be discussed is a bit differettt front the 
prevtous three. lt is a separate entity which cattttot be invoked 
by the other nlechanisms. Neither does it call any of them into 
dctiuri. ‘l’tte task of the denial tttechanisrrt is to correctly reshape 
NGLAIIBER’S nlemory whell a prediction has been niade which 
turns out to be false. This rttechanisrtt does not do attyt,hing to 
Ltie facts in rtietriory. This is because the facts 011ly summarize 
everythiug which NGI,ALIH~+X knows to be true. ‘1’0 deny sorrte- 
thing NGLAIJ IJIM knows to be a fact, would mean that the data 
1s ttoisy. Currently NGL,ALIUC:I< is not designed lo deal wtth noise 
so ttlere would be unpredictable consequences. 

The real effect of t11e denial tt&tanisrtt is to prune down the 
number of predictiotts itt tttetttory. We saw earlier that all the 
predictions in a prediction group had to be satisfied in order 
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for the hypolhesis of the group to be true. By way of the denial 
mechamsm, we can tell NGI,AUBER that one of these predictions 
is not true. If that is the case, then NGI,ALIUF:R knows that the 
hypulhesis can never be true. 

This revelation allows lhe denial mechanism to perform two 
tasks. ‘l’he first is to eliminate all predictions in the same group 
as the denied statement. At the same little, the staterrlent is 
recorded as a nonfact to keep any future prediction groups in- 
volving the statement from being formed. The reason for elim- 
inatiug the predictions is not because they have been satisfied. 
Rather, NGLAIJBEX no longer carts whether they are true be- 
cause it already knows that the hypothesis of the group is not 
true. 

‘l’his knowledge is also the justification for the secorld task of 
the denial mechanism. Since the hypothesis of the prediction 
group cannot be true, it also qualifies as a nonfact. Therefore, 
the denial mechanism loops back, using the hypothesis as the 
dctlied statement. This can lead to more predictions being re- 
moved from mernory. The cycle will continue until there are 110 

more predictions left which can be removed. All the while, non- 
facts will be recorded in ~nernory but the classes and facts will 
never be touched. 

VIII An example of NGLAUHEK at work 

111 this section we give a simplified example of NGI,AIJBE~~ 
at work on a task. We will use the same input data as used 

for C:LA~~BER by Langley, et al [6]. The example is from the 
domaiu of eighteenth century chemistry. Given a set of reactions 
bctwec:Jl elements and descriptions of the tastes of the chetnicals, 
N~II,AIIBEK forms the classes CJf acids, alkalis and salts. The 
system also comes up with a set of facts which describe these 
c.lasses arid the interactions between the classes. 

Following are the data input to the system. They were en- 
tered in the order shown, but it should be reemphasized that 
NCLAIJBEH is order-independent. No matter which order the 
facts are input, the system will end up in the same state. 

I. reacts( { HCI,NaOH}, { NaCl}) 
2. rtacts({ HCI,KOli}, {KCI)) 
3. r~acts({lINO~,NaOll}, {NaNOx}) 
4. reacts({lINOs,KOtI}, {KNOy}) 
5. taste((JfCI}, {sour}) 
6. laste((HNO3}, {sour}) 
7. lasle({NaCl}, {salty}) 
8. laste( { KCI}, (salty}) 
9. taste( {NaNOy}, {salty )) 

10. taste({KNOs}, {salty}) 
I I. tuste( { NaOH} , {bitter}) 
12. lastc({KOtf}, {bitter}) 

The first five facts listed are just added into NGI,AUUER’S 
rnetrrory unchanged because NGLAIJBEH has found no reason to 
fornl a class. However, when fact number six is introduced more 
intcrcsting things start to happen. To begin with, N~:I,AIJUEK 
notices that both HCI and [IN03 taste sour. Using this knowl- 
edge a class contaitling those two objects is formed. We will refer 
to Lhe class as ‘acids’ although NGI,AIJBEK would use a generic 
rlaIt1c’ like ‘classI’. The generalizatiort process of the introduc- 
tion mechanism then alters the reacts facts to describe the new 
class. For instance, facts one arid three are changed to 

11: c acids : reucts({z,NaOll}, {NaCI}) 
11: t: acids : reacts({z,NaOtf), {NaNOs}) 

Facts two and four are changed similarly. Notice now that 
NC;I~A[JBEH. can form two new classes based on these new reacts 

facts. Using the new facts one and three, the class salts1 -- 
(NaCI, NaNOy} will be formed. Likewise, using facts two and 

four, NGI,AIII~E;H comes up with salts2 ~ {KCI, KN03}. After 
everythmg has beet1 cortlpleted, NGLA~IBEH’S rneltlury will look 
something like this: 

acids - { tlCI, 11N03} 
salts1 - { NaCI, NaNOy} 
salts2 ~ {KCl, KN03} 

--t Vz t saltsl ‘ix t acids : reacts({z, NaOtI}, (2)) 
p VS tz acids 3.z t salts1 : rearts({z, NaOli}, {z}) 

Vr c salts2 lz C- acids : reucts({x, KOtf}, {.z}) 
Vx t acids Jz t salts:! : reacts({z, KOll}, {z}) 
Vx i a~lcis : toa’, ((y}, {sour}) 

Now is a good time to point out. that the spare of quanti- 
fied facts is 011ly partially ordered. By examining the new facts 
rrtarked by arrows, fcor example, we see two descriptious which 
surtlrtlarize the data and yet do not subsume each other. IL 

would be possible for one of these facts to be true without the 
C>Lht3 ‘l’h~s parLial ordering is discussed more in the next sec- 
tion. NGI,AIIUEH finds ulf the characterizations which apply to 
a given set of data.*” 

Durirlg this whole process predictions are being made about 
fllture data. We ttave omitted listing thern because rnost of then1 
are not true and will [lever be useful. On this and similar exam- 
ple TIIJIS, sixty to eighty five percetlt of N(:~,AIJBE:K’S predictions 
turned out Lo be fa1se.t ‘I’hese will later be reltloved with the 
denial rnechanisrn. tiowever, when fact seven is introduced, a 
useful prediction is made. Whrhr~ NGI,ALJBEK sees that NaCl 
tastes salty, it predicts that, NaNO3 will also taste salty. The 
sanle occurs with facL eight. KN03 is predicted Lo taste salty. 

There is a great deal more that happens when fact number eight 
is introduced. 

AL this poillt, N(:I,AIIISEI< has two distinct classes we are 
calling them salts! and salt,&?. When NGLAUHEII sees that mem- 
bers of each class have sotnething in common (i.e. they both 

taste salty), It decides thaL ttlese two classes should really be 
one class atld merges them. We will refer Lo this new class sim- 
ply as ‘salts’. A consequence of this merger is that facts currently 
in rnernory now describe only one class rather than two. This 
means ttlat a new class call be formed containing NaOH and 
KOH. This is t,he class of ‘alkalis’. After all appropriate quan- 
Lifcattons have been made to the existing facts, NCLAl1tJEH’s 
memory contains: 

0 acids {HCI, HN03} 
l alkalis - { NaOll, KOH} 
0 salts {NacJl, KC], NaN03, KNOs} 
l Vr t acids Vy t alkalis $2 E salts : reucfs((l, y}, (2)) 
l Vz < acids jz c salts -jy t alkalis : rmch( { .tz, y}, (2)) 

l Vy tr alkalis VT t acids iz c salts : rracts({r, y}, {z}) 

l Vy t alkalis 3, t salts 11: t acids : recrcts({z, y}, (2)) 
l Vz <- salts IX t acids Jy c. alkalis : reacts( {L, y}, {z}) 

l Vz t salts 1.c c acids Sy t alkalis : reucts({.c, y}, (z}) 

0 Vr t- acids : taste( {2}, {sour}) 
lz i_ salts : tasle( (z}, {salty}) 

N~:I,AIIBEH’s ttlenlory will also contain two important predic- 
Lions, that NaNOs and KNOy taste salty. This ensures that 
when facts nine arld ten are seen, the last fact III NGI,A~~B~:H’s 
Itlemory will be changed to 

l vz t sa lts : tuste({z}, {sa k y}) 

Facts eleven arld twelve now sirrlply result in the facl 

l Vy t alkalis : taste({y}, {bitter}) 

“‘This is suuletllillg which ~~1,AlIl1I~1: dues Ilt,t &I. 11 at,,ps wheu it 11:~s 
fdd 0062 Iof the cl~aracterizatiulls whi& apply. 

+Of cc)urst: it, is possible to trril”r exaluples where Jl uf tile preciiitivlis 
;Lre false or hone uf them de:. 
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being added to memory. The only job left is to get rid of all 
the useless predictions lying around. By denying all the false 
IJredic.tlons N<:I.AI~BER has made, such as 

reacts( { tiNO3, NaOlt}, { NaCI}) 
~~:1.AIII~lCtt’s final contents will consist only of the classes and 
quantilied facts that are Itlarked with bullets (0). These final 
quautilied facts represent the relationship between the classes 
of acids, alkalis, and salts that was discovered in the eighteenth 
century 

IX N GLAUHER as a conceptual clustering system 

III this section, we will examine the NGLAIIBEII system using 
fl‘ishclr and Langley’s framework for conceptual clustering algo- 
rlttlIlls j2,31. This frarrlework includes three c.lasses of techniques 
used 111 conceptual clustering aid divides the conceptual cluster- 
~ng tdsk into two main problerlls. ‘I’he three types of techniques 

Optirr~ization t’artitloning the object set into disjoint 
c.lusters 
11 cerurcjlicul Creating a tree, where each leaf is an iodi- 
vltfual object and each interrkal node is a cluster and 
L’fumpiny Creating independent clusters which may over- 
l&kJ. 

I,WO problems of conceptual clustering are defined as 

Ayyrcyution -- The problenl of deciding which objects will 
tJc> irl which clusters and 

(Jhuructerizution ‘rhe pr(Jblern of describing the clusters 
CJIICC ttrey have been forrIled. 

N~:I,AuHEH wes an optimization technique because its classes 
are simply partitions of the set of objects. The classes are dis- 
Joilit, but they cover all lhe objecls. Actually, it is possible for 
obje1.t~ to end up un(.Iassifir:d but each of these can be considered 
its a class of one object. 

‘I’tle uyyreyution problem IS scJlvet1 for N(;I,AIIHEH by the 
Ilt:uristlc used for fornling classes. As stated previously, classes 
art‘ forlned when two facts are found to differ in exactly one po- 
sition. ‘I’his problem has actually become simpler because of the 
iucrc:rnt:ntality of the system. Wheu a new fact is input, it only 
has to be coInpar to the exrsting facts in rrlernory in order to 
IJo~3itJly form a new class. 

‘I’tie new class is th<.u charucterizerl by the quantification pro- 
cess which changes facts destribillg objects into facts describing 
1.1 axws. This problcni is also relatively sirriple since the initial 
facts are used as ternplates to form the new facts. 

AI) iriiportant difFererIc? in ctiaracterixation from other sys- 
terns is in the quantilied facts which descrilJe the classes. Ex- 
isting ccJnceptual clustering systems form clusters and come up 
with One defining characterization for each cluster [ 1,81. In con- 
trast, there is usually not just or~e fact which defines a class 
111 NGI,AIJI~EH (or C~I,AU~C;H). More often, there is a set of 
facts irrvolving a class which describes its relationships with other 
classes. The reason this occurs is that classes are formed and 
descxribed using the relationships between objects. In other sys- 
terrls, c.lusters are fornled strictly by examining the uttributes of 
each otlject. 

‘I‘tils tyl)e of description requires thfa use of existential quanti- 
fiers. I lowever, existential quantifiers are desirable because they 
ilicrrase the power of the description language. Without them, 
fac.I,s like 

\l.r t acids Vy i-alkalis Iz t salts : reucts({z, y}, {z}) 
are not p(Jssi ble. Most existing conceptual clustering systerns 
w(Juld have trouble generating this type of description. 

‘l‘his brings us to the discussiorl of NGLAUBEH’S charucteri- 
zutiun space. As nlentioned previously, the concept descriptions 

used by N~:I,ACJHEH are partially ordered with respect to gener- 
ality. For this reason there is usually more than one applicable 
characterization for a given set of data. Consider statements 
which have two quantifiers. We can draw a direct analogy to 
mathematical logic with predicates of two variables. Fig;ie 1 
shows a diagram of the partial ordering involving a predicate 
t’(x, y) from general to specific, where the truth of more general 
statements imply the truth of more specific staternents. 

This same ordering holds on the characterization space of 
NGLAIIBEK. When more than one characterization applies to 
a set of data given to NC:I,AIIRER, it will generate every maxi- 
rnally general quantified description which is true. 

X NGLAUBER as a discovery system 

‘l‘he (; I~AC~LIEH system was designed to model the discovery of 
qualitative emplrical laws. This is just one irnp(Jrtant aspect of 
the general field of scientific discovery [5,6]. Since NGLAIJBEH is 
based on C;I.AIIBEH, it is meant to address and expand on these 
same issues. 

NGI,AIIBEH examines a set (Jf scientific data and attempts to 
characterize the regularities occuring within the data. This is 
considered to be an important first step in the scientific dis- 
covery process. One can envision NGLAUBER as part of a larger 
discovery systerrl. N(:LAIJHEH’S task might be tu srarch for qual- 
itative regularities and prompt another systern, such as BACON 
141, to do a more in-depth quantitative analysis. 

The nla~n improvement of NGLAUBEK over C;LAIIB~X is its 
ability to rllakts predictions. When NGLAUBEH makes a predic- 
tion, it IS effectively proposing an experiment to he carried out 
arid asking for the results. 13~ proposing experirnerlts, the sys- 
tem is telling the user what it thinks is interesting and should be 
looked at Illore closely. It is obviously desirable for a discovery 
systerrl to guide its own search for regularities. The prediction 
rIlecharlisIll of NCLAIII~IJX is a step in that direction. Most cur- 
rent discovery systems (and conceptual clustering systems) are 
completely passive. They simply characterize data without at- 
ternptillg tu repcJrt which data would be rncJre helpful to know 
about. 

A IllJhtJk! eXcept,ioIl LO this rule iS h?Ilat’S AM 171. AM not 
only proposes experiments in arithmetic but carries the111 out 
itself. AM also searches for regularities amung data to form 
spmal classes. In theory, AM could come up with the same 
classes as N(:I,A~IBEII does but it would complete this task in 
a very diti’ort~r~t lriarlner. The philosophy irr AM is to explore a 
corlce!Jt space looking for ‘interesting’ thmgs. Iiowever, unless 
the irltcbrestlngness functions built in to AM were highly specific, 
it st’tm~ unlikely that the concepts discovered by NGLAIIHER 
would be dlscovored by AM in a short amount of tirrle (if ever). 
‘I’he main difference between the systems is that NGLAIJBER has 
a well-defined goal t(J attain. It is attempting to change a set 
of input facts which describe objects into a set of maximally 
general quantified facts which describe classes of objects. In 
contrast, AM has no specific state it is trying to reach. It just 
perfurlrls a search through the space of possible concepts led by 
its Interest functions. This works wonderfully in the domain of 
pure rnathernatics, but does not seern easily transferable to more 
applied domains. 

XI Summary 

We have examined a system called N(:I.AlJHb:H. Althugh 
N(:I,AIJHKH was originally designed as a scientific discovery sys- 
tent, it can &o be viewed as a conceptual clustering system. 
It slrould be clear that at least part of scientific discovery in- 
volves searching for regularities in data arid creating clusters 
based upon these regularities. 

NCLAIJUER’S rnain contributions involve its incremental na- 
ture. Previous discovery systems need all their data at the outset 
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Figure 1: Parlial Ordering of Quantified Predicates 

and perform all-at-once computations. In contrast,, N(;[,AI/BER 
exartrirtes its data a piece at a tittie, allowing it to be rttore flexible 
in its c.haracterizalions of the data. Ittcremetttality also allows 
N~;I,A~~L~EK to interact with the user by trtaking predicliotts or 
proposing experirrtents about the data it has seen so far. In this 
way, t,tle system cart guide itself through the data space uttti] the 
proper characterizations are fourid. 

111 the field of cOIlceptual cluSleriIlg, increIIlenta]iLy iS a]SCJ Se]- 

dut11 used. As stated above, NC;L,AUBE:R’S characterizatiorts are 
rncjre fiexible to change as more data comes in. This rnay lead to 
rtr)n-uptitttal classes in some cases but the trade-off is tlte ability 
LO make predictions about future data. NGI,AUHER also bases 
its classes (or clusters) on relational information ralher than in- 
forrrtatiott about t,he attributes of objects. This is something 
that has not been seen in other conceptual clustering systertls. 
Finally, NGLAUHEH has a rttore powerful description language 
LhrCJUgh the use of existential quantifiers. This allows the sys- 
t,ern t.cJ describe re]at,iotrs between classes rather than just giving 
defirrittons for each class separately. 

XII Future work 

There are many directious in which this work can be extended. 
N(:LACIBEH is an irrtpcjrlant first step toward discovery systettts 
which design their own experiments. However, to become re- 
ally useful it tnust be rttade more sophisticated in sotne areas. 
One needed improvement is in the heuristic used to forrn classes. 
‘l’hts rule is sitnple and cheap since it allows NGLACJBEH Lo cotn- 
plet,e its task using IJO search (and therefore no backtracking). 
fiowevc>r, the rule is also rather nai’ve. A more sophisticated ver- 
sion of NGLAIJHEH might forrn classes frotn facts which diff‘er in 
rtiure tlian one position. In this case, a number of hypoLheses 
for the “best” classes (according to some evaluation function) 
would be retnernbered. Unfortunately, this rnethod would also 
requlrtl search. 

Viewing NG&AIJBEK'S classes as clusters and the quantified 
facts as characterizations we can consider NGLAIJBEH to be a 
conceptual clustering system. Using this knowledge, we should 
be able to look to the conceptual clustering literature fur possi- 
ble extensions to N~:LAIJUEK. Another itnportant irnprovetnent 
would be to incorporate a hierarchical technique or perhaps a 
clurtlptng technique for clustering rather than the current opti- 
mization technique. Arranging the classes as a tree would allow 
ntore Iiexible clusters and characterizattons to be formed. This 
is sotnt:thing we hope to do in the near future. We envision a 
version of NGLAUBEH which will be able to construct a periodic 
table of elements when given sets of reactions sirnllar to those 
given in our example. To corttplete this task, NGLAUHCR would 
need LU have a class for each row of the table and a class for each 
colurr~Il. 

More research needs to be done in the area of prediction- 
making. NGLAUBEK'S current tttethod sirrtply uses the goal of 
changing existentially quantified facts into universally quanti- 
fithcl Fact,s. Although this rnethod has turned out to be useful, 
tttore ittlelligettt and complicated predictions could be made by 
additlg some domain-specific knowledge to the system. Cur- 
rerlt,ly, NGLAUBEK just looks for obvious regularities in the data 

and usually generates a large nutttber of predictions. A ltttle 
inlelligencc about the dorrtaitt being cxatrtined wuulci limit the 
nuntber of prediclions rttade and allow NGI,AIIL~E~~ to proIJose a 

few specific experitnents to be performed. 
Finally, an ideal N(;I,AIJUEH systetn would be able to deal 

with a certain atnount uf noise. Currently the system detnancls 
absolute regularrty in the data lo form classes and universally 
quantified facts. A ttlore flexible system would be able to tttake 
rules describing how most of the ilettts iu a class behave. This 
wcdd rcx~lCJVe the assunlptiorr t,hat alf it,ems in a class have 
everything in c*oltlttton. This prublerrt is closely lied with the 
probletn of rrtaking more irttelligent predictions. A future ver- 
sion of NGLAIIUEH nlight carefully select a set of experiments 
to perform. If ntust of these cxperirnents succeed or fail then 
NGLAIJt3ER can corr~e up wit,h a statement that is yeneralfy true 
or false. flowever, if some expcrirttents succeed aud some fail, il 
wo1~1cl irriply that the systerti has an improper understanding of 
the true concept. In this cast:, NOLAUUEH would design more 
specific ex])eritrlettts to c’orlte up with more refitic)d classes and 
characterizations. 
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