From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

A PROGRAM THAT LEARNS TO SOLVE RUBIK’S CUBE

Richard E. Korf

Department of Computer Science
Carncgic-Mcllon University
Pittsburgh, Pa. 15213

Abstract
This paper describes a program which learns efficient strategies for
solving problems such as Rubik’s cube and the cight puzzle. It uses a
new general problem solving method based on macro-operators. The
strategics learned by the program are equal to or superior to strategies
used by humans on these problems, in terms of number of moves
required for solution.

1. Introduction: A limitation of GPS

This paper describes research aimed at extending the range of
problems that can be solved by general problem solving methods.
Currently, the most powerful such method is the combination of
means-ends analysis and operator subgoaling described by Newell and
Simon in [6], referred to here as the GPS (gencral problem solver)
paradigm. GPS utilizes a sct of differences or subgoals and a total
ordering among them to arrive at a solution by achicving the subgoals
onc at a time. GPS can cffectively solve a wide range of problems,
many with a minimum number of moves.

However, there cxist problems that cannot be solved by the GPS
formalism. 'The reason is that GPS requires a sct of subgoals that can
be solved sequentially such that once a subgoal is achieved, it never
has to be violated in order to complete the solution of the problem.
For some problems, such as Rubik’s cube, no such sct of subgoals is
known. Every known strategy for the cube involves at Ieast temporarily
violating previously cstablished subgoals in order to achieve new
subgoals. Note that if we select a set of subgoals of the form "decrease
the distance to the goal by one," then these subgoals can be solved
sequentially. However, the only known way of computing the distance
to the goal for an arbitrary state is exhaustive scarch. Hence, GPS is of
little help in solving Rubik’s cube.

The class of problems that are outside the domain of GPS is large
and of considerable practical importance. For example, one subclass is

This rescarch was sponsored by the Defense Advanced Rescarch Projects Agency
(DOD). ARPA Order No. 3597, and monitored by the Air Force Avionics Iaboratory
under Contract 1733615-81-K-1539. ‘The views and conclusions in this document are
those of the author and should not be interpreted as representing the official policics,
cither expressed or implied. of the Defense Advanced Rescarch Projects Agency or the
U.S. Government.

164

the collection of NP-hard problems. For these problems, there are no
known sects of subgoals that can be solved strictly sequentially.
Furthermore, no cfficient strategies are known for solving these
problems.

However, for some problems beyond the reach of GPS, such as
Rubik’s cube, efficient solution strategies are known. Another example
of such a problem is the well known eight-puzzle. It is interesting to
note that while efficient stratcgies-are known for these problems, there
are no cfficient strategics for finding minimal-move solutions. This
paper is concerned with this class of problems. The two questions to be
addressed are:

1. What is the structure of these cfficient strategies?

2. How can these strategics be learned or acquired?

2. MPS: Macro Problem Solver

This scction describes a problem solving program, called the Macro
Problem Solver, that can solve problems such as Rubik’s cube and the
cight-puzzle without doing any scarch. For simplicity, we will consider
the cight-puzzle as an example. The problem solver starts with a simple
sct of ordered subgoals. In the case of the.cight-puzzle, cach subgoal
will be of the form "move the N tile to the correct position,” for N
between 1 and 8, plus the blank "tile". The operators to be used are
not the primitive operators of the problem space but scquences of
primitive operators called macro—operaiors or macros for short. Each
macro has the property that it achicves one of the subgoals of the
problem without disturbing any subgoals that have becen previously
achicved. Note that intermediate states occurring within a macro may
violate prior subgoals, but by the end of the macro all such subgoals
will have been restored, and the next subgoal achieved as well.

The macros are organized into a two dimensional table, called a
Macro Table, which is analogous to the difference table of GPS. A
macro table for the eight-puzzic is shown in Table 1, while Figure 1
shows the corresponding goal state for the puzzle. A primitive move is
represented by the first letter of Right, Left, Up, or Down. Note that
this is unambiguous since only one tile, other than the blank, can be
moved in each direction. Each column contains the macros necessary
to move onc tile to the correct position without disturbing previously

positioned tiles. The headings of the columns give the solution order
or sequence in which the tles are to be positioned. Note that the first
subgoal is to position the blank. The algorithm for sclecting the rest of
the solution order will be described below. The rows of the table
correspond to the current position of the next tile to be positioned.

~ o
[+>] N
o aw

Figure 1. Goalstate for the cight-puzzle

The algorithm employed by the macro problem solver works as
follows: First the blank is located. its current position is used as a row
index into the first column, and the macro at that location is applied.
This moves the blank to the center position. Next, the number 1 tile is
located, its position is used as a row index into the second column, and
the corresponding macro is applicd. This moves the 1 tile to its correct
position and also leaves the blank in the center. The macros in the third
column move the 2 tile into its correct position while lcaving the blank
and 1 tiles in their proper places and similarly for the 3, 8, 7, and 4
tiles. At this point, tiles S and 6 must be in their correct positions or
the puzzle cannot be solved. The lower triangular form of the table is
due to the fact that as tiles are positioned, there are fewer positions that
the remaining tiles can occupy.

A similar macro table has been built for the Rubik’s cube, however
space limitations prohibit its inclusion here. There are twenty
individual movable "cubies” (1x1x1 cubes), divided into twclve edge
(two-sided) and cight corner (thréc-sided) cubies. In addition, cach
edge cubic can be in onc of two oricntations and cach corner cubie can
be in one of three possible orientations. Each subgoeal is to place a

particular cubie in its correct position and orientation. There are
eighteen primitive moves corresponding to 90 degree clockwise, 90
degree counterclockwise, and 180 degree twists, for each of six faces.
Each column of the table contains the macros required to move a
particular cubic to the correct position and orientation, from each
possible position and orientation that the cubic could be in, while
leaving the cubics previously solved in their correct positions. The
cntire table contains 238 macros. The lengths of the macros range from

onc to sixteen primitive moves.

The algorithm used to sclect the solution order is the following:
First pick a component which is affected by the least number of
primitive operators, in other words, a corner tile or an cdge cubie.
Remove those operators from the sct of operators. At cach step, pick
the component which maximizes the number of primitive opcrators
remaining which do not affect the previous goals. 'Ties arc resolved by
choosing components adjacent to those already sclected. For Rubik’s
cube, this results in intermediate stages of solving an cdge cubie, a
2x2x2 subcube, a 2x2x3 rectangular box, two 3x3x1 planes, and finally

the entire cube.

Table 2 shows that the macro strategy for the cight-puzzle requires
about the same number of primitive moves on the average as a human
problem solver and that the Rubik’s cube macro strategy is more
efficient than the strategies used by most people.

STRATEGY EIGHT-PUZZLE RUBIK'S CUBE
Optimal (brute force) 22 [7] ~182
Macro Problem Solver 39 90
Average Human 38 [2] 126°

Table 2: Average number of primitive moves in solution
path gencrated by different strategies

B 1 2 3 8 7 4
B
1w
2 U RDLU
3 RU DLURRDLU DLUR
8 L DRUL RULLDDRU RDLULDRRUL

7 LD RULDDRUL
4 R LDRURDLU LDRU
5 RD LURDLDRURDLU LURDLDRU

6 D URDLDRUL ULDDRU

RDLLURDRUL
LDRULURDDLUR

LDRUULDRDLUR URDL

DRUULDRDLU RULDRDLULDRRUL RULD

LURRDL URDLLURDRULD
ULDRURDL URDLULDRRULD LURD

LDRRUULDRDLLUR ULDR

Table 1: Macro table for the cight-puzzle

3. Learning Strategies

This section addresses the issuc of Icarning the strategics to be used
by the macro problem solver. The problem is one of finding the
macros to fill the macro table.

Given an arbitrary sequence of primitive operators (a macro) and a
solution order, we define the invariance of the macro as follows. The
macro is applicd to the goal state of the problem and then the number
of components which are in their goal position and oricntation are
counted, until a component is reached in the solution order which is
not in its goal'state. For example, if the goal state of the cight-puzzle is
represented by the vector [B'12 3 45 6 7 8], the solution order is
(B1238745 6). and the state resulting from the application of some
particular macro to the goal statc is [B 12 3 6 5 7 4 8], then the
invariance of the macro is five, because the first five tiles (including the
blank) in the solution order arc in their goal positions and the sixth
(the 7 tile) is not. The invariance of a macro determines its column in
the macro table. The row of a macro is determined by the position and
orientation of the component that occupics the position immediately
following the invariant components in the solution order. In the above
example. the row of the macro would be the one labelled 4 because the
4 tile occupics the sixth position in the solution order, or the 7 position

in the puzzle.

'The simplest learning scheme is to perform a breadth-first scarch of
the problem space starting with the goal state, and for each macro
gencrated, insert it into the macro table if the corresponding position is
empty, until the table is filled. Note that a breadth-first scarch ensures
the shortest possible macro for each position in the table. This is the
algorithm cmployed to generate the cight-puzzle macro table. It was
also used to produce a macro table for a 2x2x2 version of Rubik’s cube.

However, the combinatorics of the full 3x3x3 Rubik’s cube render
this technique ineffective. The technique used in this case is a type of
scarch. Consider which map two
corresponding cubies to the same position and orientation when
applied to the goal state. The effect of the inverse of cither macro,
obtained by replacing cach operator by its inverse operator and
reversing the order of the operators, would be to map the cubie back to

bidircctional two macros

its original position and orientation. Hence, if the inverse of the second
macro is appended to the first macro, the result is a macro which leaves
invariant the particular cubie in question. If the states resulting from
two macros match in (at most) the first N cubies of the solution order,
the composition of one with the inverse of the other is a macro with
invariance N.Thus, by storing the macros that arc generated, and
comparing cach new macro to the stored ones, the macro table can be
generated by scarching to only half the depth of the longest macro
required.

2Ihis estimate is based on the depth in the scarch tree at which the number of nodes
exceeds the number of possible states

3I}ascd on a random sample of 10 graduate students

166

Unfortunately, in addition to requiring a great decal of space, a
bidirectional scarch requires as much time as a unidircctional scarch if
cach new state must be compared to cach stored state. This is avoided
by hashing cach macro using the cubics in an initial subsequence of
the solution order. 1f macros are hashed according to the first N cubies
in the solution order, then only macros with invariance greater than or
cqual to N will be found. However in general, as the invariance
increases, the length of the corresponding macros also increases. Thus,
in a breadth-first bidircctional scarch, the macros to fill the low
invariance columns of the macro table will be found fairly carly, and
subsequent cffort can be focused on macros with greater invariance,
allowing a more effective hashing function. The algorithm maintains
an invariance threshold, which is the minimum invariance for which
the corresponding column in the macro table is not yet completely
filled. As the invariance threshold increases, the entire table is
rchashed using a hash function which takes advantage of the higher
invariance,

This algorithm is sufficient to find all macros up to length eleven for
the Rubik’s cube, before the available memory is exhausted. This still
Icaves several slots empty in the macro table. These final macros are
found by composing the macros with the greatest invariance. Note that
the composition of two macros with invariance N necessarily results in
another macro with invariance N or greater. There is some
psychological plausibility to this technique in that many human cube
solvers use compositions of shorter macros to accomplish the final

stages in their solution strategies.

The learning program for the Rubik’s cube is written in C and runs
under Unix on a VAX-11/780. The time required to completely fill the
macro table is about 15 minutes, and the memory required is aboixl
200K words.

4. Related Work

The Strips [4] program was one of the first programs to learn and
use macro-opcrators (MACROPS) in problem solving, However, the
robot problem solving domain used by Strips and other programs is
onc that is amenable to a GPS treatment.

Goldstein [3] wrote a program which automatically constructed
triangular difference tablcs for GPS. The program worked on a variety
of tasks, such as Towers of Hanoi and Instant Insanity, for which
effective differences are known.

Furst ct al [5] have demonstrated an algorithm for learning strategics
for permutation puzzles. Both the Rubik’s cube and the cight-puzzle
can be cmbedded in larger problem spaces which are permutation
The structure of the macro table is from [5]. The macro
composition technique described above is also from [5] and is the sole

groups.

technique they use for learning macros. The running time of their
algorithm is of order N& where N is the number of individual

components of the puzzle. In the case of Rubik’s cube, N is 48, one for
each individual movable squarc face of the cube. Unfortunatcly, the
Furst algorithm is impractical for problems as large as the cube (488 ~
12 billion) and would generate solutions that are inefficient in terms of
number of primitive moves (about 250).

difference h

the running time of their algorithm is related to the size o

....... = #lan asianemnab avhi
peiween thc d}]panLh CAlLl

=

problem, whereas the running time of this method is related to the

Iength of the longest macro needed to solve the problem.

Banerji [1] has made the observation that GPS fails to solve
problems such as Rubik’s cube and the fiftcen puzzle, and suggests the
technique of using macros to bridge the gaps between points of
recognizable progress. His work was independent of and occurred at
about the same time as this rescarch.

5. Further Work

There arc several arcas that are currently being investigated further
in this work. The first problem to be addressed is the identification of
heuristics to reduce the amount of computation required to learn the
macros. Onc approach is to characterize the amount of disorder in the
puzzle statc and to minimize this disorder in the scarch for macros.
The second problem is reducing the number of moves required for a
solution. Onc approach to this problem is to allow dynamic flexibility
in the solution order to allow utilization of the shortest macros at each
stage. Another approach is to satisfy more than one subgoal
simultancously. Thirdly, the number of macros in the complete
strategy can be reduced by several means. Onc is to generate subgoals
which are preconditions for the effective use of macros from a smaller
set. Another is to parameterize macros to reduce the number of similar
macros. The effect of different solution orders on these three problems

also requires study.

While the programs for the cight-puzzie and Rubik’s cube were
written scparately, efforts arc underway to gencralize these programs
to produce a single learning program that can handle this class of
problems, and to characterize the range of problems for which the
technique is uscful. Finally, any realistic model of problem solving in
these domains must admit a compound strategy composed of ordinary
difference reduction plus the application of macros to jump between

local maxima of the evaluation function.

6. Conclusions

There are three conclusions that can be drawn from this work. One
is that GPS is not useful for solving problems such as Rubik’s cube.
The second is that a generalization of GPS, called the macro problem
solver, is capable of solving these problems deterministically without
scarch. Finally, the Icarning of the macros required by the macro
problem solver can be effectively automated. The resulting strategies
are comparable to or superior to typical human strategies in terms of
number of primitive moves required for solution.

167

Acknowledgments
1 would like to acknowledge many helpful discussions concerning
this research wjth Herbert Simon. Allen Newell, Merrick Furst, Ranan
Banerji, and Glenn Iba. In addition, Dave McKcown, Kemal Oflazer,

Bruce Lucas, and Greg Korf read and provided helpful comments on

i

drafts of this paper.

References

1. Ranan B. Banerji. GPS and the psychology of the Rubik cubist: A

study in reasoning about actions. In Arrificial and Huinan Intelligenc

A. Flithorn and R. Bancrji, Eds., , 1982.

2. K. Anders Ericsson. Approaches to Descriptions and Analysis of
Problem Solving Processes: The 8-puzzle. Ph.ID. Th., University of
Stockholm, March 1976.

3. Ernst, George W., and Michaci M. Goldstein. "Mechanical
discovery of classes of problem-solving strategies.” JA.C.M. 29,1
(January 1982), 1-23.

4. Fikes, Richard E., Peter E. Hart, and Nils J. Nilsson. "Learning and
exccuting generalized robot plans.” Aritificial Intelligence 3 (1972),
251-288.

5. Furst, Merrick, John Hopcroft, and Fugene Luks. Polynomial-time
algorithms for permutation groups. 21st Annual Symposium on
Foundations of Computer Scicnce, IEEE, Syracuse, New York,
October, 1980, pp. 36-41. '

6. Newell, A. and H. A. Simon, Human Problem Solving. Prentice-
Hall, Englewood Cliffs, N.J., 1972.

7. Schoficld, P. Complete solution of the cight puzzle. In Machine
Intelligence, N. L. Collins and D. Michic, Eds., American Elsevier,
New York, 1967.

