
A PROGRAM THAT LEARNS TO SOLVE RUBIK’S CUBE 

Richard E. Korf 

Dcpartmcnt of Computer Science 
Carncgic-Mellon University 

Pittsburgh, Pa. 15213 

Abstract 
This paper dcscribcs a program which learns efficient strategies for 

solving problems such as Rubik’s cube and the eight puzzle. It uses a 
new gcncral problem solving method based on macro-operators. The 
strategies learned by the program are equal to or superior to strategies 

used by humans on these problems, in terms of number of moves 

rcquircd for solution. 

1. Introduction: A limitation of GPS 
This. paper describes rcscarch aimed at extending the range of 

problems that can be solved by general problem solving methods. 
Currently, the most powerful such method is the combination of 
means-ends analysis and operator subgoaling described by Newell and 

Simon in 161, rcfcrrcd to hcrc as the GPS (gcncral problem solver) 
paradigm. GPS utilizes a set of diffcrcnccs or subgoals and a total 

ordering among them to arrive at a solution by achieving the subgoals 

trnc at a time. GPS can cffcctivcly solve a wide range of problems, 

many with a minimum number of moves. 

However, there exist problems that cannot be solved by the GPS 

formalism. ‘I’hc reason is that GPS rcquircs a set of subgoals that can 

bc solved sequentially such that once a subgoal is achicvcd, it never 

has to bc violated in order to complctc the solution of the problem. 

For some problems, such as Rubik’s cube, no such set of subgoals is 

known. Every known strategy for the cube involves at least temporarily 

violating previously established subgoals in order to achieve new 

subgoals. Note that if we select a set of subgoals of the form “dccrcasc 

the distance to the goal by one,” then thcsc subgoals can bc solved 

scqucntially. However, the only known way of computing the distance 

to the goal for an arbitrary state is exhaustive search. Hence, GPS is of 

little help in solving Rubik’s cube. 

The class of problems that arc outside the domain of CiPS is large 
and of considerable practical importance. For example, one subclass is 

lhls rcscarch was sponsored by tic Ikfcnsc Advanced Rcscarch Projects Agency 

(1)Ol)). AKI’A Order No. 3597. and momtorcd by the Air Ikrcc Avionics laboratory 

under Contract lC33615-Xl-R-1539. The views and conclusions in this document are 

lh(~ Of lhc aulhnr and should no1 hc mtcrprctcd as rcprcscnting the official politics, 
cllhcr cxprcs\ed or Implied. ol’ tic Ikfcnsc Advanced Kc\corch Projects Agency or fie 

U.S. C;ovcrnmcnt. 

the collection of NP-hard problems. For these problems, there are no 

known sets of subgoals that can be solved strictly sequentially. 

Furthermore, no efficient strategies are known for solving these 

problems. 

However, for some problems beyond the reach of GPS, such as 
Rubik’s cube. efficient solution strategies are known. Another example 

of such a problem is the well known eight-puzzle. It is interesting to 

note that while cfflcicnt strategies arc known for these problems, there 
are no cfflcicnt strategies for finding minimal-move solutions. This 

paper is concerned with this class of problems. The two questions to be 

addressed arc: 

1. What is the structure of these efficient strategies? 

2. How can these stratcgics bc learned or acquired? 

2. MPS: Macro Problem Solver 
This section describes a problem solving program, called the Macro 

Problem Solver, that can solve problems such as Rubik’s cube and the 
eight-puzzle without doing any starch. For simplicity, WC will consider 

the eight-puzzle as an cxamplc. ‘I’hc problem solver starts with a simple 

set of ordered subgoals. In the cast of thc.cight-puzzle. each subgoal 

will bc of the form “move the N tilt to the correct position,” for N 

bctwccn 1 and 8, plus the blank “tilt”. ‘lhc operators to bc used are 
not the primitive operators of the problem space but scqucnces of 

primitive operators called nlacro-r,pern;ors or l~crus for short. Each 

macro has the property that it achicvcs one of the subgoals of the 

problem without disturbing any subgoals that have been previously 

achieved. Note that intcrmcdiatc states occurring within a macro may 

violate prior subgoals, but by the end of the macro all such subgoals 

will have been restored, and the next subgoal achieved as well. 

The macros are organized into a two dimensional table, called a 

Macro Tuble, which is analogous to the diffcrcnce table of GPS. A 

macro table for the eight-puzzle is shown in Table 1, while Figure 1 

shows the corresponding goal state for the puzzle. A primitive move is 

reprcsentcd by the first letter of Right, Left, Up, or Down. Note that 

this is unambiguous since only one tile, other than the blank, can be 

moved in each direction. EZ.ach column contains the macros necessary 
to move one tile to the correct position without disturbing previously 

164 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



positioned tiles. The headings of the columns give the solution order 
or sequence in which the tiles are to be positioned. Note that the first 

subgoal is to position the blank. The algorithm for selecting the rest of 
the solution order will be described below. The rows of the table 

correspond to the current position of the next tile to be positioned. 

12 3 
8 4 
7 6 5 

Figure 1: Goal slate for the eight-puzzle 

The algorithm employed by the macro problem solver works as 

follows: First the blank is located. its current position is used as a row 

index mto the first column, and the macro at that location is applied. 
This moves the blank to the center position. Next, the number 1 tile is 

located, its position is used as a row index into the second column, and 

the corresponding macro is applied. This moves the 1 tilt to its correct 

position and also lcavcs the blank in the centcr.Thc macros in the third 

column move the 2 tile into its correct position while leaving the blank 

and 1 tiles in their proper places and similarly for the 3, 8, 7, and 4 

tiles. At this point, tiles 5 and 6 must be in their correct positions or 

the puzzle cannot be solved. The lower triangular form of the table is 

due to the fact that as riles are positioned, there are fewer positions that 

the remaining tiles can occupy. 

A similar macro table has been built for the Rubik’s cube, however 

space limitations prohibit its inclusion here. There are twenty 

individual movable “cubies” (1x1~1 cubes), divided into twelve edge 

(two-sided) and eight corner (three-sided) cubits. In addition, each 
edge cubic can be in one of two oncntations and each corner cubic can 

be in one of three possible orientations. Each subgoal is to place a 

B 1 
0 

2 3 8 7 4 

2 u RDLU 

3 RU DLURRDLU 

particular cubic in its correct position and orientalion. There are 

eighteen primitive moves corresponding to 90 degree clockwise, 90 
degree countcrclockwisc, and 180 degree twists, for each of six faces. 

Inch column of the table contains the macros required to move a 

particular cubic to the correct position and orientation, from each 

possible position and orientation that the cubic could bc in, while 

leaving the cubies previously solved in their correct positions. The 
entire table contains 238 macros. The lengths of the macros range from 

one to sixteen primitive moves. 

The algorithm used to sclcct the solution order is the following: 

First pick a component which is affcctcd by the Icast number of 
primitive opcraLors. in other words, a corner rile or an cdgc cubic. 

Rcmovc those operators from the set of operators. At each step, pick 

the component which maximizes the number of primitive operators 

remaining which do not affect the previous goals. Tics arc rcsolvcd by 

choosing components adjacent to those already sclcctcd. For Rubik’s 

cube, this results in intcrmcdiaLc stages of solving an cdgc cubic, a 

2x2x2 subcubc, a 2x2~3 rectangular box, two 3x3x1 planes. and finally 

the cntirc cube. 

Table 2 shows that the macro strategy for the tight-puzzle rcquircs 

about the same number of primitive moves on the a\.cragc as a human 

problem solver and that the Rubik’s cube macro strategy is more 

efficient than the stratcgics used by most people. 

STRATEGY EIGHT-PUZZLE RUBIK’S CUBE 

Optimal (brute force) 22 I?1 -la2 

Macro Problem Solver 39 90 

Average Human 38 PI 12tj3 

Table 2: Average number of primitive moves in solution 
path generated by different strategies 

8 L DRUL RULLDDRU RDLULDRRUL 

7 LD RULDDRUL DRUULDRDLU RULDRDLULDRRUL RULD 

4 R LDRURDLU LDRU RDLLURDRUL LURRDL URDLLURDRULD 

5 RD LURDLDRURDLU LURDLDRU LDRULURDDLUR ULDRURDL URDLULDRRULD LURD 

6 D URDLDRUL ULDDRU LDRUULDRDLUR URDL LDRRUULDRDLLUR ULDR 

Table 1: Macro table for the eight-puzzle 

165 



3. Learning Strategies 
This section addresses the issue of learning the strategies to be used 

by the macro problem solver. The problem is one of finding the 

macros to fill the macro table. 

Given an arbitrary scqucncc of primitive operators (a macro) and a 

solution order, WC define the invaricrnce of the macro as follows. The 

macro is applied to the goal state of the problem and then the number 

of components Mhich are in their goal position and orientation are 
counted, until a component is rcachcd in the solution order which is 

not in its goal state. For example, if the goal state of the eight-puzzle is 

rcprcscntcd by the vector [B 1 2 3 4 5 6 7 81, the solution order is 
(I3 1 2 3 8 7 4 5 6). and the state resulting from the application of some 

particular macro to the goal state is [I3 1 2 3 6 S 7 4 81, then the 

invarinncc of the macro is live, bccausc the first five tiles (including the 

blank) in the solution order arc in their goal positions and the sixth 

(the 7 tilt) is not. ‘I’hc invariance of a macro dctcrmincs its column in 

the macro table. The row of a macro is dctcrmincd by the position and 

orientation of the component that occupies the position immcdiatcly 

following the invariant components in the solution order. In the above 

example. the row of the m:lcro would bc the one labcllcd 4 bccausc the 

4 tile occupies the sixth position in the solution order, or the 7 position 

in the puzzle. 

The simplest learning scheme is to perform a breadth-first starch of 

the problem space starting with the goal state, and for each macro 

gcncratcd. insert it into the macro table if the corresponding position is 

empty, until the table is filled. Note that a breadth-first starch ensures 

the shortest possible macro for each position in the table. This is the 

algorithm employed to gcncratc the eight-puzzle macro table. It was 

also used to produce a macro table for a 2x2x2 version of Rubik’s cube. 

Howcvcr, the combinatorics of the full 3x3x3 Rubik’s cube render 
this technique incffcctive, The technique used in this case is a type of 

bidirectional search. Consider two macros which map two 

corresponding cubits to the same position and orientation when 

applied to the goal state. The cffcct of the inverse of either macro, 

obtained by replacing each operator by its invcrsc operator and 

rcvcrsing the order of the operators, would be to map the cubic back to 
its original position and orientation. Hcncc, if the invcrsc of the second 

macro is appcndcd to the first macro, the result is a macro which leaves 
invariant the particular cubic in question. If rhc states resulting from 

two macros match in (at most) the first N cubits of the solution order, 
the composition of one with the invcrsc of the other is a macro with 

invariance N. Thus, by storing the macros that arc gcneratcd, and 
comparing each new macro to the stored ones. the macro table can be 

gcncratcd by searching to only half the depth of the longest macro 
required. 

2 
lhs cslimalc k based on the dcplh 

cxcccds the number ofpssiblc states 

in tic tree at which the number of nodes 

3 
Based on a random sarnplc of 10 graduate students 

Unfortunately. in addition to requiring a great deal of space, a 
bidirectional search rcquircs as much time as a unidirectional starch if 

each new state must be compared to each stored state. This is avoided 
by hashing each macro using the cubits in an initial subsequence of 

the solution order. If macros arc hashed according to the first N cubits 

in the solution order, then only macros with invariance grcatcr than or 

equal to N will bc found. Howcvcr in gcncral, as the invariance 

incrcascs, the length of the corresponding macros also incrcascs. Thus, 

in a breadth-first bidirectional search, the macros to fill the low 

invariance columns of the macro table will bc found fairly early, and 

subscqucnt effort can bc focused on macros with grcatcr invariance, 

allowing a more effective hashing function. The algorithm maintains 

an invariance threshold, which is the minimum invariance for which 

the corresponding column in the macro table is not yet completely 
filled. As the .invariance threshold increases, the entire table is 

rehashed using a hash function which takes advantage of the higher 

invariance. 

This algorithm is sufficient to find all macros up to length eleven for 

the Rubik’s cube, before the available memory is exhausted. This still 

leaves several slots empty in the macro table. These final macros are 

found by composing the macros with the greatest invariance. Note that 

the composition of two macros with invariance N necessarily results in 

another macro with invariance N or greater. There is some 

psychological plausibility to this technique in that many human cube 
solvers use compositions of shorter macros to accomplish the final 

stages in their solution strategies. 

The learning program for the Rubik’s cube is written in C and runs 

under Unix on a VAX-111780. The time required to completely fill the 

macro table is about 15 minutes, and the memory required is about 

200K words. 

4. Related Work 
The Strips [4] program was one of the first programs to learn and 

use macro-operators (MACROPS) in problem solving. However, the 

robot problem solving dotnain used by Strips and other programs is 
one that is amenable to a GPS treatment. 

Goldstein [3] wrote a program which automatically constructed 

triangular difference tables for GPS. The program worked on a variety 

of tasks, such as ‘I’owcrs of Hanoi and Instant Insanity, for which 

effective diffcrcnccs arc known. 

Furst ct al [5] have demonstrated an algorithm for lcaming strategies 
for permutation puzzles. Both the Rubik’s cube and the eight-puzzle 

can bc cmbeddcd in larger problem spaces which arc permutation 

groups. The structure of the macro table is from [5]. The macro 

composition tcchniquc described above is also from [S] and is the sole 

tcchniquc they use for learning macros. The running time of their 

algorithm is of order N6, where N is the number of individual 



cnmponcnts of the puzzle. In the cast of Rubik’s cube, N is 48, one for 

each individual movable square face of the cube. Unfortunately, the 

Furst algorithm is impractical for problems as large as the cube (4g6 * 

12 billion) and would generate solutions that are inefficient in terms of 

number of primitive moves (about 250). However, the most significant 

diffcrencc between the approach exhibited here and that of [5] is that 

the running time of their algorithm is related to the size of the 

problem, whereas the running time of this method is related to the 

length of the longest macro needed to solve the problem. 

Bancrji [l] has made the observation that GPS fails to solve 

problems such as Rubik’s cube and the fifteen puzzle, and suggests the 
technique of using macros to bridge the gaps between points of 

recognizable progress. His work was independent of and occurred at 
about the same time as this research. 

5. Further Work 
Thcrc arc several arcas that are currently being investigated further 

in this work. The first problem to be addrcsscd is the identification of 

heuristics to reduce the amount of computation required to learn the 
macros. One approach is to charactcrizc the amount of disorder in the 

puzzle state and to minimize this disorder in the starch for macros. 
The second problem is reducing the number of moves required for a 

solution. One approach to this problem is to allow dynamic flexibility 
in the solution order to allow utilization of the shortest macros at each 

stage. Another approach is to satisfy more than one subgoal 

simultaneously. Thirdly, the number of macros in the complete 

strategy can be reduced by scvcral means. One is to gcncratc subgoals 

which are preconditions for the effcctivc USC of macros from a smaller 

set. Another is to paramctcrize macros to rcducc the number of similar 
macros. ‘l’hc cffcct of diffcrcnt solution orders on thcsc three problems 

also rcquircs study. 

While the programs for the tight-puzzle and Rubik’s cube were 

written scparatcly, efforts arc underway to gcncralizc thcsc programs 

to produce a single learning program that can handle this class of 

problems. and to characterize the range of problems for which the 
tcchniquc is useful. Finally, any realistic model of problem solving in 
thcsc domams must admit a compound strategy composed of ordinary 

difference reduction plus the application of macros to jump between 

local maxima of the evaluation function. 

6. Conclusions 
‘I’herc are three conclusions that can bc drawn from this work. One 

is that GPS is not useful for solving problems such as Rubik’s cube. 

The second is that a generalization of GPS, called the macro problem 

solver, is capable of solving these problems detertninistically without 

search. Finally, the learning of the macros required by the macro 

problem solver can be effectively automated. The resulting strategies 

are comparable to or superior to typical human strategies in terms of 

number of primitive moves required for solution. 

Acknowledgments 
I would like to acknowlcdgc many helpful discussions concerning 

this rcscarch with Hcrbcrt Simon. Allen Newell, Mcrrick Furst, Ranan 

Banerji, and Glenn Iba. In addition, Dave McKeown, Kcmal Oflazer, 

Bruce Lucas, and Greg Korf read and provided helpful comments on 

drafts of this paper. 

References 

1. Ranan 13. Ranerji. GPS and the psychology of the Rubik cubist: A 
study in reasoning about actions. In AriiJicid arzd Hurmrz Intelligence, 
A, Elithorn and Ii. ljancrji, Eds.. , 1982. 

2. K. Anders Ericsson. Approaches to DescripliorJs and Annlysis of 
Pruhkn~ S’ol~ir~g ProccsJes: The B-puzzle. Ph.D. Th., University of 
Stockholm. March 1976. 

3. Ernst, George W., and Michael M. Goldstein. “Mechanical 
discovery of classes of problem-solving strategies.” J. A.C.M. 29,l 
(January 1982), l-23. 

4. Fikcs, Richard E., Peter E. Hart, and Nils J. Nilsson. “Learning and 
executing generalized robot plans.” AriIificial Inlelligence 3 (1972), 
251-288. 

5. Furst, Mcrrick, John Hopcroft, and Eugene Luks. Polynomial-time 
algorithms for permutation groups. 21st Annual Symposium on 
Foundations of Computer Scicncc. IEEE, Syracuse, New York, 
October, 1980, pp. 36-41. 

6. Newell, A. and H. A. Simon. Humn 
Hall, Englcwood Cliffs, N.J., 1972. 

Problem Solving. Prentice- 

7. Schofield, P. Complete solution of the tight puzzle. In Machine 
IrJtelligeJJce, N. I,. Collins and I). Michic, Eds., American Elscvier, 
New York, 1967. 

167 


